
Abstract
Efficient irregular texture nesting, which is necessary for improving the
efficiency of texture mapping and 3D model rendering, especially for
large-scale 3D reconstruction tasks, has emerged as a critical research
topic in the fields of photogrammetry, computer graphics, and computer
vision. However, persistent inefficiencies and high computational costs
in existing texture nesting algorithms pose significant challenges when
dealing with vast quantities of irregularly shaped texture patches. To
solve this problem, this work presents an efficient and well-structured
texture nesting for reorganizing irregular textures in a space-efficient
and time-efficient way. More specifically, a hybrid optimization ap-
proach that integrates an enhanced no-fit polygon (NFP) method with
an improved simplified atavistic differential evolution (SADE) algorithm
is proposed. The canonical SADE is reformulated, tailored for texture
nesting optimization, and a novel self-adaptive container resizing
strategy is used to surpass traditional NFP approaches in polygon
processing efficiency. The experimental results demonstrate that the
proposed method significantly improves irregular texture nesting ef-
ficiency, achieving speed improvements of up to 5.44 times compared
with the common genetic algorithm–based method and 5.21 times over
the simulated annealing–based method. Furthermore, it consistently
improves space use by approximately 6.56%, indicating a more effective
layout strategy and optimized resource use. Code is available at https://
github.com/louliyuan/NFP-SADE-With-Adaptive-Container-Resizing.

Introduction
Texture nesting optimization has been a classical and fundamental
research topic in the field of computer graphics and computer vision,
playing a crucial role in improving 3D model rendering and texture
mapping efficiency, particularly in the context of photogrammetric
3D reconstruction. In large-scale 3D reconstruction tasks, particularly
those using photogrammetric techniques, texture mapping generates
thousands of irregularly shaped and spatially dispersed texture patches,
degrading performance and memory consumption (Weinhaus and
Devarajan 1997; Ling and Qin 2023). In the absence of systematic op-
timization, these irregular patches lead to suboptimal loading efficiency
and rendering delays (Dai et al. 2015).

The necessity for efficient texture nesting optimization becomes
critical, as it consolidates irregularly shaped texture patches into larger
and well-structured images, improving both loading efficiency and ren-
dering performance of 3D models (Toulatzis and Fudos 2021). Despite
advancements in texture mapping, existing texture nesting algorithms
remain inefficient and computationally expensive, particularly in large-
scale 3D reconstruction tasks. These limitations impede processing
workflows and hinder the broader industrial adoption of such tech-
niques, where both efficiency and cost-effectiveness are of paramount

importance (Sheng et al. 2021; Ling and Qin 2023). Therefore,
optimizing texture nesting efficiency is essential for reducing memory
costs, enhancing productivity, and minimizing processing delays in
large-scale 3D reconstruction (Junior et al. 2013; Liu et al. 2023)

To handle irregular texture patches more effectively, this paper pro-
poses a hybrid optimization approach that integrates an enhanced no-fit
polygon (NFP) method with a refined simplified atavistic differential
evolution (SADE) algorithm. Moreover, a self-adaptive container re-
sizing strategy is implemented to facilitate container grouping, thereby
enhancing the efficiency of irregular polygon dataset management and
optimizing both nesting efficiency and computational performance.
The key contributions of this work are as follows:
1.	 Enhanced SADE algorithm for texture nesting optimization: The

traditional SADE algorithm is refined through the incorporation of
specialized mutation operations tailored to polygon placement and
rotation, optimized population initialization, and dynamic fitness
evaluation adjustment. Such modifications contribute to faster
convergence and improved solution diversity, facilitating more ef-
ficient and high-quality nesting exploration.

2.	 Adaptive container grouping strategy with parallel-enabled NFP:
To address the challenges in packing large-scale irregular textures,
we propose an adaptive container grouping strategy that dynami-
cally resizes and manages multiple containers during the placement
process. By area-based polygon sorting and adaptive container
adjustment, the method significantly improves use of space and
reduces redundant computations. Furthermore, the container
grouping strategy naturally facilitates parallel processing, allowing
independent containers to be processed simultaneously, thus further
enhancing computational efficiency. Compared with conventional
NFP approaches, this method achieves a better balance between
solution quality and speed.

3.	 Hybrid NFP-SADE framework: The enhanced NFP and SADE
algorithm are integrated into a unified optimization framework.
The resulting synergy leverages geometric precision of NFP for
collision-free placements and the evolutionary adaptability of
SADE for global optimization, thus achieving a balance between
computational efficiency and nesting quality.
For clarity and systematic analysis, the remainder of this paper is

structured as follows. “Related Work” reviews existing relevant texture
nesting studies, followed by an overview of key concepts in “Basics.”
“The Proposed Hybrid Method” presents the proposed method, and
“Computational Experiments” reports the experimental results. Finally,
“Conclusion” offers our conclusion and outlook for future works.

An Efficient Irregular Texture Nesting
Method via Hybrid NFP-SADE with

Adaptive Container Resizing
Liyuan Lou, Wanyun Li, Jingle Yu, Xin Wang, and Zongqian Zhan

Liyuan Lou, Wanyun Li, Jingle Yu, Xin Wang, and Zongqian Zhan
are with the School of Geodesy and Geomatics, Wuhan University,
Wuhan, Hubei Province, 430072, China.

Corresponding author: Xin Wang (xwang@sgg.whu.edu.cn)

Received March 22, 2025, accepted June 16, 2025.

Photogrammetric Engineering & Remote Sensing
Vol. 91, No. 11, November 2025, pp. 1–XX.

0099-1112/22/1–XX
© 2025 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.25-00038R3

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 1

Related Work
In this section, three relevant topics are reviewed: First, classical bin
packing strategies and the NFP framework, both of which provide
foundational algorithms for spatial layout optimization and can be ad-
opted in texture nesting, are studied. Second, the heuristic algorithms
specifically designed for nesting optimization tasks are discussed.
Finally, some relevant deep learning–based methods are reviewed.

Classical Nesting Algorithms and NFP-Based Techniques
Classical Bin Packing Approaches
Classical bin packing algorithms have long served as foundational
tools for spatial layout optimization, including texture nesting applica-
tions. These methods, originally developed for rectangular or regularly
shaped objects, aim to maximize use of space within constrained con-
tainers and remain relevant for polygonal texture layout tasks.

Among these, guillotine-based methods have attracted consider-
able attention because of their simplicity and recursive structure. The
two-dimensional cutting and packing problem was first introduced by
Gilmore and Gomory (1965) and has since been extensively studied.
Early research focused on rectangular items with orthogonal cuts,
where bins were iteratively divided using horizontal or vertical parti-
tions (Mumford-Valenzuela et al. 2004; Charalambous and Fleszar
2011; Zhang et al. 2016). While efficient for regular shapes, these meth-
ods exhibit limitations when applied to irregular geometries. Recent
advancements have extended guillotine strategies to handle irregular
convex polygons by permitting nonorthogonal cuts, thereby reducing
material waste through dynamic edge matching and separation cuts
(Bennell et al. 2018). Notably, Bennell et al. (2018) proposed a beam
search heuristic that integrates best-match edge alignment with adaptive
separation strategies, achieving use rates of 85%–90% across single-
and multi-bin scenarios. Their approach significantly outperformed
prior metaheuristics (Martinez-Sykora et al. 2015) in computational ef-
ficiency, reducing run time by up to 80% for large-scale instances while
maintaining solution quality through a hybrid evaluation framework.

Skyline-based algorithms have similarly evolved to include increas-
ingly sophisticated placement strategies. Wei et al. (2011), for instance,
introduced a rectilinear skyline model that dynamically tracks avail-
able space using adaptive skyline segments. This method emphasizes
edge-aligned placements to minimize spatial fragmentation and uses
a multi-criteria evaluation strategy incorporating spread constraints
and fitness-based rules. A notable innovation is the integration of tabu
search, which promotes solution diversity through strategic rectangle
swaps. This hybrid approach enhances packing density and mitigates
premature convergence by effectively escaping local optima. As a result,
this method demonstrates improved robustness and adaptability over
traditional skyline heuristics, especially in complex layout scenarios.

Collectively, these classical bin-packing strategies, especially guillo-
tine- and skyline-based approaches, constitute the algorithmic founda-
tion of modern spatial layout optimization. Their continuous refinement
through heuristic improvements, hybridization, and geometric gener-
alization has expanded their applicability to irregular and large-scale
packing tasks. Although originally tailored for regular geometries, the
core principles—recursive subdivision, skyline profiling, and heuristic-
based placement—remain essential in contemporary texture nesting
workflows. When integrated with broader optimization frameworks and
domain-specific constraints, these strategies offer interpretable and high-
performance solutions for both academic and industrial applications.

NFP in Irregular Packing
The NFP plays a foundational role in addressing irregular packing
problems, particularly in enabling collision-free placement of complex
shapes. Early theoretical contributions by Stoyan and Ponomarenko
(1977) introduced the geometric basis of NFP through Minkowski
sums, allowing precise boundary computation for convex objects.
Dean et al. (2006) subsequently enhanced computational efficiency by
proposing a vector-based approach, streamlining overlap detection in
irregular nesting tasks.

Recent developments have expanded the applicability of NFP
to handle nonconvex polygons and dynamic datasets. Jiang et al.
(2016) proposed a two-stage NFP algorithm that combines convex

decomposition with sliding vector operations, achieving a 15%
improvement in packing density compared with traditional methods.
Similarly, Xu et al. (2017) integrated NFP with hybrid heuristics—
such as simulated annealing (SA)—to demonstrate its versatility in
large-scale industrial cutting applications. Aji et al. (2015) further
applied NFP in distributed systems for spatial partitioning, highlighting
its scalability in parallel processing environments.

Despite these advances, traditional NFP techniques still encounter
challenges in computational efficiency and use of space, particularly
when processing large-scale or highly diverse texture datasets. Many
existing implementations rely on sequential container allocation
strategies (Junior et al. 2013), leading to redundant overlap checks and
limited parallelism. These limitations are directly addressed by our en-
hanced NFP approach, which incorporates adaptive container grouping
to improve computational efficiency and layout performance.

Heuristic Algorithms for Nesting Optimization
Heuristic algorithms have seen significant advancements in recent
years, particularly through hybrid approaches that combine genetic
algorithms (GAs) with other optimization techniques such as SA-based
and particle swarm optimization to tackle complex texture nesting prob-
lems. For instance, Xu and Zhou (2023) proposed a hybrid algorithm
that combines improved GAs with tabu search to address two-dimen-
sional rectangular nesting problems. This method uses adaptive selec-
tion, crossover, and mutation operators, along with local search strate-
gies during the convergence phase, to improve material use. Kang et al.
(2024) introduced an enhanced GA integrated with a fusion tabu search
strategy to solve three-dimensional bin packing problems (3D-BPPs).
Their approach uses a wall-building method to generate packing solu-
tions under residual space constraints, incorporating adaptive fitness
variation and chromosome adjustment strategies to enhance population
diversity and convergence speed. Furthermore, tabu search optimizes
the balance between global and local search capabilities, allowing the
algorithm to escape local optima and enhance packing efficiency.

Additionally, Kang et al. (2012) proposed a hybrid GA for the
3D-BPP, using an improved depth-bottom-left-fill strategy. This
method dynamically manages packing space objects and optimizes
the packing sequence through an adaptive crossover and mutation
mechanism. Sun et al. (2025) introduced a hybrid chaotic evolutionary
particle swarm optimization algorithm for two-dimensional packing
problems involving conflict and load-balancing constraints. Their ap-
proach enhances local search capabilities via chaotic logistic mapping
and incorporates elite crossover and dynamic mutation to avoid prema-
ture convergence. These two methods advance heuristic algorithms in
complex nesting problems by integrating spatial partitioning strategies
and hybrid optimization mechanisms, offering valuable insights into
handling geometric constraints and improving computational efficiency
in texture nesting optimization.

Deep Learning–Based Methods
Relevant deep learning–based studies have been widely applied to var-
ious scene representations, including volumes, point clouds, meshes,
and implicit functions (Liu et al. 2015; Achlioptas et al. 2018; Huang
et al. 2018; Kanazawa et al. 2018; Wang et al. 2018; Chen and Zhang
2019; Mescheder et al. 2019; Sitzmann et al. 2019; Niemeyer et al.
2020). Hertz et al. (2020) proposed a generative adversarial network
(GAN)–based framework for mesh-aware geometric texture synthesis,
enabling parameterization-free texture transfer across arbitrary genus
shapes through vertex displacement in normal and tangential direc-
tions. This approach overcomes the limitations inherent to conven-
tional 2D displacement maps.

Based on GANs, the spatially adaptive normalization model pro-
posed by Park et al. (2019) is particularly well suited for complex scene
stitching because it dynamically adjusts generation parameters for
different regions through spatially adaptive normalization layers, effec-
tively preserving the detailed information of the input semantic layout.
Additionally, convolutional neural networks are used to synthesize tex-
tures for large-scale environments. For instance, Dumoulin et al. (2016)
proposed a framework for texture synthesis with generative networks
that can learn to map the high-level attributes of textures to pixel-level

2	 November 2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

details. Moreover, deep learning techniques for optimizing texture nest-
ing have become more sophisticated, with models trained on large-scale
datasets to handle specific complex texture synthesis and mapping tasks
(Gatys et al. 2015; Bergmann et al. 2017; Xian et al. 2018; Xu et al.
2021; Efros and Freeman 2023; Lin et al. 2023; Fan et al. 2024).

Graph-based deep learning methods have also introduced alterna-
tive solutions to texture mapping and nesting problems, emphasizing
a balance between global consistency and local detail optimization.
Teimury et al. (2020) introduced Graph-Seam, a supervised graph-
based learning framework that automates UV mapping via graph
neural networks to predict seam placements, thus reducing distortion
and seam length while replicating artist-desired seam styles Similarly,
Rouhani et al. (2020) proposed a noniterative global texture alignment
method that selects optimal keyframes for each mesh face and uses a
geometry-aware matching technique for seamless texture reconstruc-
tion, resulting in efficient large-scale texture mapping.

Further extending graph-based deep learning, Dharma et al. (2022)
developed a graph-GAN for 3D texture generation, using unsuper-
vised learning to extract object component information. This approach
eliminates the need for costly forward passes when altering camera
viewpoints or lighting, enabling generalization to unseen 3D meshes
and further improving the practicality of graph-based approaches.
Notably, the graph convolutional networks proposed by Kipf and
Welling (2016) further enhance graph-based learning by efficiently
propagating node features through localized spectral filters, achieving
scalable semisupervised classification with linear computational com-
plexity in the number of graph edges. Their framework avoids explicit
graph regularization and adaptively learns representations from both
labeled and unlabeled data, offering potential optimizations for model-
ing texture-to-mesh relationships.

Despite recent advances, many deep learning–based approaches
remain constrained by task specificity, high data requirements, and
substantial computational overhead, which limits their direct applica-
bility to geometry-driven texture nesting tasks. Future research may
focus on developing lightweight architectures and hybrid frameworks
to overcome these challenges.

Basics
To enhance clarity in presenting our proposed method, this section first
introduces two fundamental basics that underpin its operation: the NFP
and the SADE algorithm.

The NFP
The NFP is a geometric computational tool used to determine the
potential contact positions of polygons. It has proven to be an effective
method for solving a variety of problems, such as two-dimensional ir-
regular cutting-stock problems (Junior et al. 2013). The NFP is widely
applied across various fields, including computer graphics, image
processing, and geometric optimization (Dean et al. 2006; Jiang et al.
2016; Xu et al. 2017; Wang, Gu et al. 2024; Wang, Zhang et al. 2024).

In general, the NFP is defined as follows: given two polygons, A (the
fixed piece) and B (the orbital piece), and a reference point on B, denot-
ed RB, the NFP is a geometric shape that defines the set of all potential
positions of B relative to A, where B remains in contact with A but does

not overlap. The trajectory traced by reference point RB, as it moves
along the contour of A, forms a closed polygon that represents the NFP
of A relative to B (Wang, Zhang et al. 2024), as shown in Figure 1.

Figure 1. No-fit polygon generation process.

In our implementation, since the nesting objects in this study are
irregular polygons, we use the Minkowski sum (Ghosh 1993), a con-
cept involving the combination of two arbitrary point sets, A and B, to
calculate the NFP between convex polygons. The Minkowski sum is
the result of adding each point in set A to every point in set B, which is
expressed as:

	 A5B = {a + b : a∈A, b∈B}	 (1)

The union of the geometric elements of a set can also be defined
by the Minkowski vector sum. If Ab represents the set A translated by
vector B, then

	 	
(2)

The above definition assumes that both polygons share the same
orientation, in which case the NFP is not produced. However, if poly-
gon B is transposed to its symmetric set

	 B' = {–b:b∈B}	 (3)

then A and B' would share the same orientation, enabling the genera-
tion of the NFP. Stoyan and Ponomarenko (1977) initially established
the relationship between the Minkowski vector method and normals,
with a more rigorous proof provided in their work. They refer to the
NFP as the hodograph. Therefore, the process of calculating the critical
polygon for convex polygons A and B is as follows:
1.	 First, vectorize polygon A in the counterclockwise direction and

polygon B in the clockwise direction.
2.	 Place the starting points of all vector edges of polygon A at the

origin (0, 0) and the same for polygon B.
3.	 Sort all vector edges of polygons A and B in ascending order ac-

cording to the angle between each vector and the reference vector.
4.	 Finally, connect the sorted vector edges sequentially from head to

tail to obtain the critical polygon for A and B.
The computational diagram for convex polygons A and B is shown

in Figure 2.

Figure 2. Simple example of Minkowski vector and normal method for generating no-fit polygon (NFP).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 3

SADE Algorithm
The SADE algorithm was developed as an extension of traditional dif-
ferential evolution (DE) via extensive research and iterative develop-
ments (Hrstka and Kučerová 2000). It is designed to address complex
optimization problems in continuous domains, particularly for those
with a large number of variables. SADE integrates key features of DE
with elements of GAs, combining the simplified differential operator
of DE with a framework similar to that of GAs. This hybridization
improves its adaptability and efficiency, making it particularly suitable
for large-scale optimization tasks (Hrstka and Kučerová 2004).

A comprehensive description of the SADE method, including
the algorithm scheme, operators, and documentation for tests on
high-dimensional optimization problems, can be found in Hrstka and
Kučerová (2000).

The SADE algorithm tends to form clusters of candidate solutions,
which dynamically evolve across the search space. This behavior
shares similarities with gradient-based optimization methods, but dif-
fers in several key aspects. First, SADE evaluates multiple candidate
solutions simultaneously, allowing it to more effectively identify subre-
gions that contain optimal solutions. Furthermore, since the evolution
of individuals is influenced by their relative distances, the algorithm
dynamically adjusts step sizes, which enhances its ability to efficiently
converge toward an optimal solution. More details regarding the imple-
mentation of the SADE algorithm may be seen in Table 1.

Table 1. Algorithm 3.1: simplified atavistic differential evolution
(SADE).
Algorithm 3.1   Simplified Atavistic Differential Evolution (SADE)
1: Initialize population P
2: Initialize crossover rate and mutation strategy selection rate
3: while the termination condition is not met do
4:   for individual i in P do
5:    Select a mutation strategy
6:    Generate the mutation vector V
7:    Perform the crossover operation to generate the candidate solution U
8:    if fitness(U) > fitness(P[i]) then
9:     P[i]= U
10:    end if
11:   end for
12:   Adaptively update the crossover rate and mutation strategy selection rate
13: end while

The Proposed Hybrid Method
In this section, we report a detailed overview of the overall workflow
of our new hybrid method focusing on two main contributions: 1)
enhanced NFP method and 2) improved SADE algorithm.

Overview of Our Hybrid Nesting Method
Figure 3 shows the general workflow and main components of our pro-
posed method, which integrates two primary parts: NFP generation and
the SADE process. The pseudocode of the proposed hybrid method is
provided in Table 2.

To enhance clarity, the definitions of several critical parameters
are provided. The population size P denotes the number of individuals
preserved in each generation throughout the evolutionary process. This
parameter was empirically calibrated through preliminary experimen-
tation to achieve a trade-off between solution accuracy and computa-
tional efficiency. The termination condition in the algorithm is defined
by two factors: the number of iterations and the optimal fitness value.
Specifically, the algorithm terminates when the number of iterations
reaches the predefined maximum (Iterations < MaxIter) or when the
optimal fitness value of the best individual falls below a predetermined
threshold (fbest < T). The target fitness value T corresponds to a prede-
termined threshold that reflects an acceptable level of solution quality.
Its value was established in accordance with practical application

requirements and informed by empirical observations derived from
previous studies.

Table 2. The proposed hybrid texture nesting method.
Algorithm 4.1   Hybrid Optimization Method
Input: Polygon dataset, population size P, mutation rate MR, termination condition
Output: Optimized texture layout solution
1: Sort polygons in descending order of area
2: Estimate initial container size using total polygon area
3: Initialize primary and secondary containers
4: Generate initial population P with feasible placements and rotations
5: while termination condition not met do
6:   Calculate and obtain all the NFP between polygons
7:   for each polygon in sorted dataset do
8:    Attempt placement in primary container using NFP
9:    if placement fails then assign to secondary container
10:   end for
11:   Apply adaptive resizing on primary container if fill ratio < SUR
12:   Evaluate fitness for each individual in the population
13:   Sort P by fitness in ascending order
14:   Preserve best individual
15:   for each selected individual CHi do
16:    Generate random reference individual RP
17:    Compute mutation vector:
18:   CHk(t+1) = CHi(t) + MR×(RP – CHi(t))
19:    Ensure feasibility of mutated individual
20:   end for
21:   Combine original and mutated population
22:   while population size >P do
23:    Randomly select two individuals
24:    Discard the one with worse fitness
25:   end while
26: end while

Figure 3. The overall workflow of the proposed method. NFP = no-
fit polygon; SADE = simplified atavistic differential evolution.

NFP Generation
First, the polygon dataset is sorted by area size in descending order,
and an appropriate container size is then determined based on the total
area of all polygons. Second, unlike the traditional NFP method, our

4	 November 2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

approach incorporates the container group strategy with parallel com-
putation, where placed polygons are assigned to a primary container,
while unplaced ones are directed to a secondary container for concur-
rent processing. Finally, all NFPs between polygon pairs are computed,
and each polygon is assessed for feasible placement positions. More
details can be found in “Enhanced NFP Method.”

SADE-Based Optimization
To efficiently solve the texture nesting problem, we adopt an im-
proved SADE algorithm tailored for geometric layout optimization.
The SADE component operates on a population-based evolutionary
framework, starting with the initialization of a diverse and constraint-
compliant population. Each individual encodes the placement and
rotation of all polygons and is evaluated using the fitness function.
The optimization proceeds iteratively via a main evolutionary loop,
where individuals undergo mutation based on a randomized differential
strategy, followed by fitness evaluation and selection through a modi-
fied tournament mechanism. Notably, individuals violating geometric
constraints are discarded or penalized during evaluation, ensuring the
feasibility of generated layouts. The algorithm terminates when either
a maximum number of generations is reached or a convergence thresh-
old is met. This design leverages the global search capability of SADE
while integrating geometric feasibility checks from the NFP module to
improve convergence speed and solution quality. (See more details in
“Improved SADE.”)

Enhanced NFP Method
As the number of polygons increases, the computational cost and time
required for NFP calculations grow significantly. The traditional
container allocation method exacerbates these challenges by demon-
strating low space use and excessive resource waste, which become
more pronounced with complex polygon shapes or uneven dataset
distributions, leading to decreased computational efficiency and higher
operational costs (Aji et al. 2015; Zuo et al. 2022). The workflow of
the enhanced NFP process is illustrated in Figure 4.

To address these limitations, this paper introduces two key im-
provements to the traditional NFP approach, with a particular emphasis
on a container group strategy designed to enhance scalability and
adaptability in large-scale texture layout tasks.

Specifically, the process begins by estimating an initial container
size based on the total area of all polygons. This estimation is rounded
to the nearest power of two to ensure compatibility with GPU-based
texture rendering and mipmapping. If the fill ratio of the container falls
below a predefined threshold (SUR [Spatial Utilization Ratio]), its
width is dynamically reduced to improve packing compactness while
maintaining placement feasibility.

Subsequently, a container group strategy is applied to manage the
placement process. All polygons are initially sorted in descending
order of area, and then processed in parallel. Polygons that can be
feasibly placed are assigned to the primary container, while those that
cannot be placed because of geometric constraints are redirected to a
secondary container for concurrent processing. This design improves
computational efficiency by isolating unplaceable or complex shapes
into a separate container, thereby reducing placement conflicts and
redundant overlap computations. Each container manages its own
placement logic independently, which is particularly effective when
handling texture datasets with a high degree of shape diversity or
uneven polygon distribution. While only two containers are used, this
mechanism achieves partial parallelism and improves throughput by
localizing computational complexity.

Together, the adaptive resizing mechanism and dual-container
strategy enable the proposed approach to efficiently handle diverse and
large-scale polygon datasets. By localizing complexity and dynami-
cally adjusting space allocation, the method achieves a favorable
balance between computational efficiency and packing quality, making
it particularly suitable for real-world texture layout applications with
high performance demands.

Improved SADE
To address the inefficiencies of existing texture nesting algorithms, this
work incorporates various optimization strategies into the classical

Figure 4. Enhanced no-fit polygon (NFP) processing workflow.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 5

SADE algorithm, yielding a more effective texture nesting optimiza-
tion algorithm based on SADE. Figure 5 presents the workflow of our
improved SADE process and the key modules. Specifically, the process
begins with the preparation of a polygon dataset and the enhanced NFP
generation. If the SADE algorithm has not yet been initialized, the
process proceeds with population initialization; otherwise, the
population is sorted in ascending order according to fitness, and the
best individual is preserved. Then, the main loop is executed.

Initialize SADE (Init Population)
The initialization phase of the SADE algorithm plays a crucial role in
establishing a diverse and feasible starting point for the evolutionary
process, which directly affects convergence behavior and overall per-
formance. In this phase, each individual in the population is randomly
generated within the feasible solution space to ensure diversity and
broad coverage of the search domain (Hrstka and Kučerová 2004).
Parameters such as placement positions and rotation angles are typical-
ly sampled from a uniform distribution to avoid any initial bias toward
specific regions. Importantly, all generated individuals are required
to satisfy problem-specific constraints from the outset, guaranteeing
that the initial population is valid and suitable for evolution. A fixed
population size P is maintained, with each individual represented as
a vector of decision variables tailored to the structure of the problem.
This well-initialized population forms the foundation for subsequent
evolutionary operations, such as mutation and selection, and provides
the algorithm with a robust starting point for exploring the solution
space effectively.

Main Loop of the Improved SADE
The main loop of the improved SADE algorithm iteratively executes
a sequence of operations until a termination condition is met, which
occurs either when the maximum number of iterations is reached or
when the optimal fitness value falls below a predefined threshold. At
each generation, individuals are randomly selected, undergo mutation
operations, and are subsequently evaluated. The population is then
updated through a selection and elimination process that retains the
most promising solutions.

Mutation plays a pivotal role in maintaining diversity and promot-
ing global exploration in the evolutionary process. In this framework,
mutation is primarily implemented through the Mutation operator,
which introduces stochastic perturbations into selected individuals
while preserving feasibility. Specifically, when an individual binary
string (so-called chromosome) CHi(t) is selected for mutation, a new
random chromosome RP is generated, and the updated chromosome
CHk(t+1) is computed using the following strategy (Hrstka et al 2003):

	 CHk(t+1) = CHi(t) + MR (RP – CHi(t))	 (4)

Here, MR is the mutation rate, controlling the scale of the variation
introduced. This formulation ensures that new individuals are gener-
ated in a direction guided by a randomly sampled reference, thereby
balancing exploration and exploitation. All mutations are constrained
within the valid solution space, ensuring that geometric feasibility and
placement constraints are respected.

Following mutation, the algorithm proceeds with a selection and
elimination phase to refine the population. Inspired by a modified tour-
nament selection strategy, two individuals are randomly selected from
the combined population (original and mutated), and the one with the
worse fitness is discarded. This elimination step is repeated iteratively
until the population size is reduced back to the predefined constant P.
This elitist yet diversity-preserving approach ensures that high-quality
individuals are retained while maintaining sufficient variability to
avoid premature convergence.

Time Complexity Analysis
The time complexity of our method is discussed as well. Given that
the population size is defined as N, the maximum number of iterations
as MaxIter, and the complexity of the find_fitness function as O(f),
we evaluate the computational cost accordingly. First, the complex-
ity of generating the population is O(N), where the fitness values of N
individuals in each population are calculated sequentially, resulting in a
complexity of O(N×f). Then, in the main iteration of Table 2, the rank-
ing process based on fitness values has a complexity of O(N log N),
while the mutation operation applied to each individual has a com-
plexity of O(N). The fitness evaluation for all individuals is with a
complexity of O(N×f), and identifying the optimal individual involves
either sorting or traversing, adding a complexity of O(N).

Consequently, the total complexity within the main iteration is

	 O(N log N+N×f)	 (5)

Thus, the overall time complexity of the algorithm is expressed as

	 O(N)+ O(N×f)+O(MaxIter×(N log N + N×f))	 (6)

After simplifying by neglecting lower-order terms, the time com-
plexity is reduced to

	 O(MaxIter×(N log N + N×f))	 (7)

Computational Experiments
Experimental Settings
To demonstrate the efficacy of our proposed hybrid method, some
real polygon datasets were used via unmanned aerial vehicle oblique
photogrammetry. First, 3D mesh tiles were generated through the

Figure 5. Improved simplified atavistic differential evolution (SADE) processing workflow.

6	 November 2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

commercial software ContextCapture, and the boundaries of individual
texture maps were extracted from the relevant OBJ files and converted
into polygonal coordinate data, forming the dataset for our testing.

For evaluation, three datasets of various sizes (D1, D2, and D3)
were used to test our hybrid optimization method, each containing a
different number of polygons. Based on these datasets, extensive abla-
tion studies were reported; then, the traditional texture nesting methods
based on GA and SA algorithm were compared. The details of the da-
tasets are listed in Table 3 and sample images of experimental textures
are shown in Figure 6. All the proposed methods were implemented in
Python, and all tests were conducted on a MacBook equipped with an
Apple M4 Pro chip and 24 GB of RAM. Code is available at https://
github.com/louliyuan/NFP-SADE-With-Adaptive-Container-Resizing.

Table 3. Dataset characteristics.

Datasets

Total
Number
of Parts

Maximum
Number

of Vertices
in a Polygon

Total
Number

of Vertices

Average
Number

of Vertices
Per Polygon

D1 302 30 2276 7.54

D2 360 24 3544 9.84

D3 1123 30 8217 7.32

Ablation Studies
Performance of the Improved SADE Algorithm
In this section, the three datasets (D1, D2, and D3) are used to evaluate
the proposed improved SADE algorithm. Table 4 reports the results of
two metrics: execution time (the average of three independent trials for
each dataset) and space use rates. The conducted experiments include a
GA-based method (integrating GA with the traditional NFP approach),
an SA-based method (integrating SA algorithm with the traditional
NFP approach, referred to as SA), an original SADE-based method (in-
tegrating traditional SADE with the traditional NFP approach, referred
to as Original), and an improved SADE-based method (integrating
the improved SADE with the traditional NFP approach, referred to as
Improved). It can be seen that the improved SADE algorithm consis-
tently achieves the best execution times across all datasets. Notably,

it achieves a 16.1% speed improvement on D1 and an 8.3% improve-
ment on D3 compared with the original SADE method. Moreover, it
demonstrates superior performance to both the GA and SA baselines,
which are commonly used heuristic optimization techniques in polygon
packing problems. In terms of space use, the improved SADE method
maintains the high packing density of the original SADE algorithm
(84.94%–85.46%), while outperforming the GA-based approach by
a significant margin (up to 10% higher in D2). It is worth noting that
while the SA-based method matches the packing rate of SADE, it falls
short in computational efficiency.

Table 4. Performance of the improved simplified atavistic differential
evolution. Time efficiency and space use rate are provided. Best result
is highlighted in bold.
Method/Data Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
112.547 229.959 1418.115 65.43 75.73 83.61

GA 113.345 228.509 1373.179 65.43 85.46 82.56
110.281 226.127 1439.077 65.43 85.46 82.73

average_1 112.057 228.198 1410.124 65.43 82.22 82.97
111.565 219.710 1350.344 65.43 85.46 84.94

SA 112.896 215.375 1386.211 65.43 85.46 84.94
109.694 220.550 1329.140 65.43 85.46 84.94

average_2 111.385 218.545 1355.232 65.43 85.46 84.94
128.948 266.731 1446.152 65.43 85.46 84.94

Original 128.797 228.509 1463.868 65.43 85.46 84.94
120.857 280.344 1516.427 65.43 85.46 84.94

average_3 126.201 275.967 1410.124 65.43 85.46 84.94
109.518 206.866 1305.766 65.43 85.46 84.94

Improved 108.754 207.889 1257.224 65.43 85.46 84.94
91.356 204.347 1316.055 65.43 85.46 84.94

average_4 103.209 206.367 1293.015 65.43 85.46 84.94
GA = genetic algorithm; SA = simulated annealing.

These results confirm that our improved SADE algorithm delivers a
better balance between computational efficiency and packing quality,
making it well suited for large-scale and time-sensitive applications

Figure 6. Sample textures of experimental data.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 7

such as texture layout. Figure 7 further illustrates the qualitative
differences among the GA-based, SA-based, and improved SADE-
based placements, clearly highlighting the superior compactness and
placement efficiency achieved by the proposed method.

Performance of NFP Parallelization
To explore the efficiency of the NFP parallelization strategy, it was
incorporated into the Improved method, and the execution time was
compared across three datasets. Each test was performed using a single
iteration, and the final results were averaged over three independent
trials, as summarized in Table 5. The results demonstrate that the NFP
parallelization strategy improves computational efficiency by approxi-
mately 8% over the traditional NFP implementation.

Investigation of Iteration Number
Table 6 presents the results obtained using different numbers of itera-
tions. The comparison is made between the Improved method executed
with 2, 3, and 5 iterations. The results indicate that increasing the
number of iterations typically has only a marginal effect on overall use
of space, with no significant improvements observed. However, higher
iteration counts cost substantially more execution time, reducing time
efficiency. Note that this test assumes that the container size is suf-
ficient to accommodate all polygons.

Table 5. Comparison of execution time (s) with and without no-fit
polygon parallelization. Best data is highlighted in bold.
Method/Data D1 D2 D3

47.905 93.793 649.874
With 47.477 99.568 647.443

50.087 95.124 649.933
average_time_1 48.490 96.162 649.083

52.763 100.345 650.890
Without 52.436 99.773 656.647

53.678 100.415 654.925
average_time_2 52.959 100.17748 654.154

Table 6. Comparison of space use and execution time across different
iteration counts.

Counts/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3

2 103.209 206.367 1393.015 65.43 85.46 84.94

3 151.913 306.374 2015.819 65.43 85.46 84.94

5 254.660 508.987 3254.855 65.43 85.46 84.94

(a) Visualization of D1

(b) Visualization of D2

(c) Visualization of D3

Figure 7. Comparison of visualization results among simplified atavistic differential evolution–based (left), genetic algorithm–based (middle),
and simulated annealing–based (right) methods.

8	 November 2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Performance of Container Group Strategy
To evaluate the effectiveness of the proposed container group strategy,
Table 7 compares execution time and space use on different datasets,
both with and without the container group strategy. The results show
that integrating the container group strategy can significantly reduce
execution time, achieving efficiency improvements of approximately
70% for D2 and D3. This demonstrates the superior performance of the
optimized algorithm in handling large-scale datasets. Furthermore, use
of space improved across all datasets, approaching SUR regardless of
dataset size.

Table 7. Comparison of space use and execution time with and without
container group (SUR = 95%). Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
52.077 41.551 427.984 65.43 92.02 87.45

With 45.086 41.615 428.817 65.43 92.02 87.45
47.169 42.685 433.528 65.43 92.02 87.45

Average 48.110 41.950 430.110 65.43 92.02 87.45
109.518 206.866 1305.766 65.43 85.46 84.94

Without 108.754 207.889 1257.224 65.43 85.46 84.94
91.356 204.347 1316.055 65.43 85.46 84.94

Average 103.209 206.367 1293.015 65.43 85.46 84.94

Tables 7 and 8 provide results using the threshold of SUR 95% and
90%, respectively. When space use requirement in NFP is lower, our
optimized algorithm can run more quickly. Despite threshold (SUR)
variations, the algorithm maintains a consistent performance trend
across datasets, further confirming its reliability. A qualitative effect of
the container group strategy on D2 and D3 is shown in Figure 8.

Table 8. Comparison of space use and execution time with and without
container group (SUR = 90%). Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
45.714 37.404 1256.504 65.43 92.02 84.94

With 45.173 37.360 1242.021 65.43 92.02 84.94
44.987 37.245 1291.741 65.43 92.02 84.94

Average_1 45.291 37.336 1263.422 65.43 92.02 84.94
109.518 206.866 1305.766 65.43 85.46 84.94

Without 108.754 207.889 1257.224 65.43 85.46 84.94
91.356 204.347 1316.055 65.43 85.46 84.94

Average_2 103.209 206.367 1293.015 65.43 85.46 84.94

Overall, the optimized adaptive container resizing function demon-
strates robust optimization performance under varying threshold (SUR)
and dataset conditions. The strategy significantly enhances execution
efficiency, reduces computation time, and improves use of space. These
results confirm the robustness and stability of the proposed method.
However, the observed performance differences across datasets
highlight the critical influence of dataset characteristics (e.g., polygon
count, size, and shape) on optimization effectiveness.

Comparison with Classical Heuristic Methods
In this section, the proposed method that integrates an enhanced NFP
method with an improved SADE algorithm is compared with the clas-
sical GA-based method combining with the traditional NFP and the
SA-based method that incorporates SA into the same layout frame-
work. The results are presented in Table 9.

Table 9. Comparison of space use and execution time between the
proposed and classical heuristic methods. Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
52.077 41.551 427.984 65.43 92.02 87.45

Proposed 45.086 41.615 428.817 65.43 92.02 87.45
47.169 42.685 433.528 65.43 92.02 87.45

Average 48.110 41.950 430.110 65.43 92.02 87.45
112.547 229.959 1418.115 65.43 75.73 83.61

GA 113.345 228.509 1373.179 65.43 85.46 82.56
110.281 226.127 1439.077 65.43 85.46 82.73

Average 112.057 228.198 1410.124 65.43 82.22 82.97
111.565 219.710 1350.344 65.43 85.46 84.94

SA 112.896 215.375 1386.211 65.43 85.46 84.94
109.694 220.550 1329.140 65.43 85.46 84.94

Average 111.385 218.545 1355.232 65.43 85.46 84.94
GA = genetic algorithm; SA = simulated annealing.

(a) Visualization of D2 (Left) and D3 (Right) Without
Container Group

(b) Visualization of D2 With Container Group

(c) Visualization of D3 With Container Group

Figure 8. Visualization of different datasets before and after applying
the container group strategy.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 9

It can be found that the proposed method significantly outperforms
both classical heuristic methods in terms of execution efficiency,
achieving up to 5.44 times speed improvement over the GA-based
method and 5.21 times speed improvement over the SA-based method,
particularly for large-scale datasets such as D3. Additionally, the
proposed method exhibits substantially higher use of space, indicat-
ing a more efficient algorithm design and a more effective resource
allocation strategy. A sample irregular texture mapping result is shown
in Figure 9, in which Figure 9a is the reorganized texture image and
Figure 9b is the corresponding layout of irregular polygons.

(a) Re-organized Texture Image

(b) Polygon Layout

Figure 9. Visual results of reorganized texture image and polygon layout.

Conclusion
This paper presents a novel hybrid optimization approach for efficient
irregular texture nesting, integrating an enhanced NFP method with
an improved SADE algorithm. To address computational inefficien-
cies and suboptimal use of space in large-scale 3D texture nesting, we
introduce a self-adaptive container resizing strategy, parallelized NFP
processing, and refined mutation operations for polygon placement.
These innovations collectively improve collision-free nesting explora-
tion, maintain population diversity, and accelerate convergence.

Experimental results on real-world datasets demonstrate the supe-
riority of the proposed method over two canonical heuristic methods,
specifically the GA-based and SA-based methods. Without container
grouping, our method outperforms both classical heuristic methods,
achieving a 12% reduction in execution time and a 3%–10% improve-
ment in use of space compared with the GA-based method. With
adaptive container grouping, the execution time is reduced by up to
5.44 times over the GA-based method and 5.22 times over the SA-
based method. Our method’s practicability is validated by its consistent
performance across datasets of varying sizes, exhibiting better space
use rate and time efficiency. Additionally, extensive ablation studies

prove the efficacy of parallelized NFP and adaptive container strategies
in balancing time efficiency and space use rate.

Beyond the specific scope of texture layout optimization, the
proposed approach demonstrates strong potential for broader ap-
plicability within urban informatics and smart city systems. In traffic
management scenarios, heterogeneous vehicle types—represented as
irregular polygons—can be dynamically configured in constrained ur-
ban spaces, such as intersections, parking zones, or emergency access
routes. Optimizing these spatial configurations can enhance road usage
efficiency, alleviate congestion, and improve safety and resilience.
Furthermore, the algorithm’s core mechanisms are transferable to
domains such as logistics, intelligent warehouse systems, and virtual
urban modeling, where scalable layout optimization and real-time
spatial planning are essential.

In future work, we plan to extend the proposed framework to sup-
port more complex and dynamic polygonal structures, particularly those
with internal holes. Although the current implementation focuses on
external boundary–based NFP computation, interior voids are common
in real-world texture data and can significantly affect nesting outcomes.
Efficiently handling such features will require advancements in auto-
matic hole detection and NFP generation tailored to hole-aware con-
figurations. Additionally, we aim to incorporate support for nonconvex,
dynamic datasets; explore the integration of deep learning techniques
for predictive container initialization; and adopt GPU-accelerated paral-
lelization to enhance scalability and computational performance. These
directions represent key avenues for improving the flexibility, robust-
ness, and real-time applicability of our hybrid optimization system.

Acknowledgement
This work was financially Supported by the National Nature Science
Foundation of China (No. 42301507).

References
Achlioptas, P., Diamanti, O., Mitliagkas, I. and Guibas, L. 2018. Learning

representations and generative models for 3D point clouds, Proceedings of
the 35th International Conference on Machine Learning, 10–15 July 2018,
Stockholm, Sweden (International Conference on Machine Learning: San
Diego, California), pp. 40–49.

Aji, A., Hoang, V. and Wang, F. 2015. Effective spatial data partitioning for scalable
query processing. arXiv:1509.00910 [cs.DB]. https://doi.org/10.48550/
arXiv.1509.00910.

Bennell, J. A., Cabo, M. and Martinez-Sykora, A. 2018. A beam search approach
to solve the convex irregular bin packing problem with guillotine cuts.
European Journal of Operational Research 270(1), 89–102.

Bergmann, U., Jetchev, N. and Vollgraf, R. 2017. Learning texture manifolds
with the periodic spatial GAN. arXiv:1705.06566 [cs.CV]. https://doi.
org/10.48550/arXiv.1705.06566.

Charalambous, C. and Fleszar, K. 2011. A constructive bin-oriented heuristic for
the two-dimensional bin packing problem with guillotine cuts. Computers &
Operations Research 38(10):1443–1451.

Chen, Z. and Zhang, H. 2019. Learning implicit fields for generative shape
modeling, Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 15–20 June 2019, Long Beach, California (IEEE:
Piscataway, New Jersey), pp. 5939–5948.

Dai, X., Xiong, H. and Gong, J. 2015. A multrtexture automatic merging approach
for the 3D city models. Geomatics and Information Science of Wuhan
University 40(3):347–352+411.

Dean, H. T., Tu, Y. and Raffensperger, J. F. 2006. An improved method for
calculating the no-fit polygon. Computers & Operations Research
33(6):1521–1539.

Dharma, K. C., Morrison, C. T. and Walls, B. 2022. Texture generation using
a graph generative adversarial network and differentiable rendering,
International Conference on Image and Vision Computing New Zealand,
24–25 November 2022, Auckland, New Zealand (Springer Nature: Cham,
Switzerland), pp. 388–401.

Dumoulin, V., Shlens, J. and Kudlur, M. 2016. A learned representation for artistic
style. arXiv:1610.07629 [cs.CV]. https://doi.org/10.48550/arXiv.1610.07629.

Efros, A. A. and Freeman, W. T. 2023. Image quilting for texture synthesis and
transfer. In Seminal Graphics Papers: Pushing the Boundaries, vol. 2.
Association for Computing Machinery: New York, New York, pp. 571–576.

10	 November 2025	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Fan, W., Fang, J. and Huang, G. 2024. An improved image texture synthesis
based on algorithm convolution neural network. Physical Communication
66:102395.

Gatys, L., Ecker, A. S. and Bethge, M. 2015. Texture synthesis using convolutional
neural networks, NIPS’15: Proceedings of the 29th International Conference
on Neural Information Processing Systems, July 10–15, 2018, Stockholm,
Sweden, edited by J. Dy and A. Krause, vol. 1 (MIT Press: Cambridge,
Massachusetts), pp. 262–270.

Ghosh, P. K. 1993. A unified computational framework for Minkowski operations.
Computers & Graphics 17(4):357–378.

Gilmore, P. C. and Gomory, R. E. (1965). Multistage cutting stock problems of two
and more dimensions. Operations Research 13(1), 94–120.

Hertz, A., Hanocka, R., Giryes, R. and Cohen-Or, D. 2020. Deep geometric
texture synthesis. arXiv:2007.00074 [cs.GR]. https://doi.org/10.48550/
arXiv.2007.00074.

Hrstka, O. and Kučerová, A. 2000. Search for optimization method on
multidimensional real domains. Contributions to Mechanics of Materials and
Structures, CTU Reports 4:87–104.

Hrstka, O., Kučerová, A., Lepš, M. and Zeman, J. 2003. A competitive comparison
of different types of evolutionary algorithms[J]. Computers & Structures,
81(18-19): 1979-1990.

Hrstka, O. and Kučerová, A. 2004. Improvements of real coded genetic algorithms
based on differential operators preventing premature convergence. Advances
in Engineering Software 35(3–4):237–246.

Huang, P., Matzen, K., Kopf, J., Ahuja, N. and Huang, J. 2018. Deepmvs: Learning
multi-view stereopsis, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 18–23 June 2018, Salt Lake City, Utah
(IEEE: Piscataway, New Jersey), pp. 2821–2830.

Jiang, W., Guo, J. and Yang, J. 2016. A two-dimensional nesting algorithm by using
no-fit polygon, 2016 IEEE 7th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), 13-15 October 2016,
Vancouver, Canada (IEEE: Piscataway, New Jersey), pp. 1–5.

Junior, B. A., Pinheiro, P. R. and Saraiva, R. D. 2013. Tackling the irregular strip
packing problem by hybridizing genetic algorithm and bottom-left heuristic,
2013 IEEE Congress on Evolutionary Computation, 20–23 June 2013,
Cancun, Mexico (IEEE: Piscataway, New Jersey), pp. 3012–3018.

Kanazawa, A., Tulsiani, S., Efros, A. A. and Malik, J. 2018. Learning category-
specific mesh reconstruction from image collections, Proceedings of
the European Conference on Computer Vision (ECCV), Part XV, 8–14
September 2018, Munich, Germany (SpringerNature), pp. 371–386.

Kang, K., Moon, I. and Wang, H. 2012. A hybrid genetic algorithm with a new
packing strategy for the three-dimensional bin packing problem. Applied
Mathematics and Computation 219(3):1287–1299.

Kang, Z., Guan, Y., Wang, J. and Chen, P. 2024. Research on genetic algorithm
optimization with fusion tabu search strategy and its application in solving
three-dimensional packing problems. Symmetry 16(4):449.

Kipf, T. N. and Welling, M. 2016. Semi-supervised classification with graph
convolutional networks. arXiv:1609.02907 [cs.LG]. https://doi.org/10.48550/
arXiv.1609.02907.

Lin, J., Xu, Z., Sharma, G. and Pappas, T. N. 2023. Texture representation via
analysis and synthesis with generative adversarial networks. e-Prime—
Advances in Electrical Engineering, Electronics and Energy 6:100286.

Ling, X. and Qin, R. 2023. Large-scale and efficient texture mapping algorithm
via loopy belief propagation. IEEE Transactions on Geoscience and Remote
Sensing 61:1–11.

Liu, C., Si, Z., Hua, J. and Jia, N. 2023. Optimizing two-dimensional irregular
packing: a hybrid approach of genetic algorithm and linear programming.
Applied Sciences 13(22):12474.

Liu, F., Shen, C., Lin, G. and Reid, I. 2015. Learning depth from single monocular
images using deep convolutional neural fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence 38(10):2024–2039.

Martinez-Sykora, A., Alvarez-Valdes, R., Bennell, J. and Oliveira, J. F. (2015).
Constructive procedures to solve 2-dimensional bin packing problems with
irregular pieces and guillotine cuts. Omega 52:15–32.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S. and Geiger, A. 2019.
Occupancy networks: Learning 3d reconstruction in function space,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 15–20 June 2019, Long Beach, California (IEEE: Piscataway,
New Jersey), pp. 4460–4470.

Mumford-Valenzuela, C. L., Vick, J. and Wang, P. Y. 2004. Heuristics for large
strip packing problems with guillotine patterns: An empirical study. In
Metaheuristics: Computer Decision-Making, edited by M.G.C. Resende and
J. P. de Sousa. Boston, Massachusetts: Kluwer Academic Publishers, pp.
501–522.

Niemeyer, M., Mescheder, L., Oechsle, M. and Geiger, A. 2020. Differentiable
volumetric rendering: Learning implicit 3D representations without 3D
supervision, Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 14–19 June 2020, virtual (IEEE: Piscataway, New
Jersey), pp. 3504–3515.

Park, T., Liu, M. Y., Wang, T. C. and Zhu, J. Y. 2019. Semantic image synthesis
with spatially-adaptive normalization, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 15–20 June 2019,
Long Beach, California (IEEE: Piscataway, New Jersey), pp. 2337–2346.

Rouhani, M., Fradet, M., and Baillard, C. 2020. Efficient texture mapping via a
non-iterative global texture alignment. arXiv:2011.00870 [cs.CV]. https://doi.
org/10.48550/arXiv.2011.00870.

Sheng, X., Yuan, J., Tao, W., Tao, B. and Liu, L. 2021. Efficient convex
optimization-based texture mapping for large-scale 3D scene reconstruction.
Information Sciences 556: 143–159.

Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G. and Zollhofer, M.
2019. Deepvoxels: Learning persistent 3D feature embeddings, Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
15–20 June 2019, Long Beach, California (IEEE: Piscataway, New Jersey),
pp. 2437–2446.

Stoyan, Y. G. and Ponomarenko, L. D. 1977. Minkowski sum and hodograph of the
dense placement vector function. Reports of the Ukrainian SSR Academy of
Science, ser. A, 10.

Sun, B., Li, G., Wang, S. and Xie, C. 2025. Two-dimensional bin-packing problem
with conflicts and load balancing: A hybrid chaotic and evolutionary particle
swarm optimization algorithm. Computers & Industrial Engineering
200:110851.

Teimury, F., Roy, B., Casallas, J. S., MacDonald, D. and Coates, M. 2020.
Graphseam: Supervised graph learning framework for semantic UV mapping.
arXiv:2011.13748 [cs.GR]. https://doi.org/10.48550/arXiv.2011.13748.

Toulatzis, V. and Fudos, I. 2021. Deep tiling: texture tile synthesis using a deep
learning approach. arXiv:2103.07992 [cs.CV]. https://doi.org/10.48550/
arXiv.2103.07992.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W. and Jiang, Y. G. 2018. Pixel2mesh:
Generating 3D mesh models from single RGB images, Proceedings of the
European Conference on Computer Vision (ECCV), 8–14 September 2018,
Munich, Germany (Springer, Cham, Switzerland) pp. 52–67.

Wang, X., Zhang, N., Wang, A. and Ge, Y. 2024. Research on 2D nesting
optimization combining improved no-fit polygon method and genetic
algorithm, 2024 IEEE International Conference on Mechatronics and
Automation (ICMA), 4–7 August 2024, Tianjin, China (IEEE: Piscataway,
New Jersey), pp. 62–67.

Wang, Y., Gu, Y., Miao, J., Zhang, Y., Jin, C. and Guan, G. 2024. Research on
intelligent nesting algorithm for irregular ship parts based on no-fit-polygon.
Applied Ocean Research 150:104108.

Wei, L. and Lim, A., et al. 2011. A skyline-based heuristic for the 2d rectangular
strip packing problem, Modern Approaches in Applied Intelligence: 24th
International Conference on Industrial Engineering and Other Applications
of Applied Intelligent Systems 28 June–1 July 2011, Syracuse, NY (Springer:
Berlin, Germany), pp. 286–295.

Weinhaus, F. M. and Devarajan, V. 1997. Texture mapping 3D models of real-world
scenes. ACM Computing Surveys (CSUR) 29(4):325–365.

Xian, W., Sangkloy, P., Agrawal, V., Raj, A., Lu, J., Fang, C., … and Hays, J.
2018. Texturegan: Controlling deep image synthesis with texture patches,
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 18–23 June 2018, Salt Lake City, Utah (IEEE: Piscataway, New
Jersey), pp. 8456–8465.

Xu, J., Wu, X., Liu, H. and Zhang, M. 2017. An optimization algorithm based on
no-fit polygon method and hybrid heuristic strategy for irregular nesting
problem, 2017 36th Chinese Control Conference (CCC), 26-28 July 2017,
Dalian, China (IEEE: Piscataway, New Jersey), pp. 2858–2863.

Xu, R., Guo, M., Wang, J., Li, X., Zhou, B. and Loy, C. C. 2021. Texture memory-
augmented deep patch-based image inpainting. IEEE Transactions on Image
Processing 30: 9112–9124.

Xu, X., Zhou, L. 2023. Research on two-dimensional rectangular part layout
problem based on improved genetic tabu search hybrid algorithm. Operations
Research and Fuzziology 13:581.

Zhang, D., Shi, L. and Leung, S. C. H., et al. 2016. A priority heuristic for the
guillotine rectangular packing problem. Information Processing Letters
116(1):15–21.

Zuo, Q., Liu, X. and Chan, W. K. V. 2022. A constructive heuristic algorithm for 3D
bin packing of irregular shaped items, INFORMS International Conference
on Service Science, 2–4 July 2022, Shenzhen, China (Cham, Switzerland:
Springer International Publishing), pp. 393–406.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 November 2025 	 11

