
Abstract
Efficient irregular texture nesting, which is necessary for improving the 
efficiency of texture mapping and 3D model rendering, especially for 
large-scale 3D reconstruction tasks, has emerged as a critical research 
topic in the fields of photogrammetry, computer graphics, and computer 
vision. However, persistent inefficiencies and high computational costs 
in existing texture nesting algorithms pose significant challenges when 
dealing with vast quantities of irregularly shaped texture patches. To 
solve this problem, this work presents an efficient and well-structured 
texture nesting for reorganizing irregular textures in a space-efficient 
and time-efficient way. More specifically, a hybrid optimization ap-
proach that integrates an enhanced no-fit polygon (NFP) method with 
an improved simplified atavistic differential evolution (SADE) algorithm 
is proposed. The canonical SADE is reformulated, tailored for texture 
nesting optimization, and a novel self-adaptive container resizing 
strategy is used to surpass traditional NFP approaches in polygon 
processing efficiency. The experimental results demonstrate that the 
proposed method significantly improves irregular texture nesting ef-
ficiency, achieving speed improvements of up to 5.44 times compared 
with the common genetic algorithm–based method and 5.21 times over 
the simulated annealing–based method. Furthermore, it consistently 
improves space use by approximately 6.56%, indicating a more effective 
layout strategy and optimized resource use. Code is available at https://
github.com/louliyuan/NFP-SADE-With-Adaptive-Container-Resizing.

Introduction
Texture nesting optimization has been a classical and fundamental 
research topic in the field of computer graphics and computer vision, 
playing a crucial role in improving 3D model rendering and texture 
mapping efficiency, particularly in the context of photogrammetric 
3D reconstruction. In large-scale 3D reconstruction tasks, particularly 
those using photogrammetric techniques, texture mapping generates 
thousands of irregularly shaped and spatially dispersed texture patches, 
degrading performance and memory consumption (Weinhaus and 
Devarajan 1997; Ling and Qin 2023). In the absence of systematic op-
timization, these irregular patches lead to suboptimal loading efficiency 
and rendering delays (Dai et al. 2015).

The necessity for efficient texture nesting optimization becomes 
critical, as it consolidates irregularly shaped texture patches into larger 
and well-structured images, improving both loading efficiency and ren-
dering performance of 3D models (Toulatzis and Fudos 2021). Despite 
advancements in texture mapping, existing texture nesting algorithms 
remain inefficient and computationally expensive, particularly in large-
scale 3D reconstruction tasks. These limitations impede processing 
workflows and hinder the broader industrial adoption of such tech-
niques, where both efficiency and cost-effectiveness are of paramount 

importance (Sheng et al. 2021; Ling and Qin 2023). Therefore, 
optimizing texture nesting efficiency is essential for reducing memory 
costs, enhancing productivity, and minimizing processing delays in 
large-scale 3D reconstruction (Junior et al. 2013; Liu et al. 2023)

To handle irregular texture patches more effectively, this paper pro-
poses a hybrid optimization approach that integrates an enhanced no-fit 
polygon (NFP) method with a refined simplified atavistic differential 
evolution (SADE) algorithm. Moreover, a self-adaptive container re-
sizing strategy is implemented to facilitate container grouping, thereby 
enhancing the efficiency of irregular polygon dataset management and 
optimizing both nesting efficiency and computational performance. 
The key contributions of this work are as follows:
1.	 Enhanced SADE algorithm for texture nesting optimization: The 

traditional SADE algorithm is refined through the incorporation of 
specialized mutation operations tailored to polygon placement and 
rotation, optimized population initialization, and dynamic fitness 
evaluation adjustment. Such modifications contribute to faster 
convergence and improved solution diversity, facilitating more ef-
ficient and high-quality nesting exploration. 

2.	 Adaptive container grouping strategy with parallel-enabled NFP: 
To address the challenges in packing large-scale irregular textures, 
we propose an adaptive container grouping strategy that dynami-
cally resizes and manages multiple containers during the placement 
process. By area-based polygon sorting and adaptive container 
adjustment, the method significantly improves use of space and 
reduces redundant computations. Furthermore, the container 
grouping strategy naturally facilitates parallel processing, allowing 
independent containers to be processed simultaneously, thus further 
enhancing computational efficiency. Compared with conventional 
NFP approaches, this method achieves a better balance between 
solution quality and speed. 

3.	 Hybrid NFP-SADE framework: The enhanced NFP and SADE 
algorithm are integrated into a unified optimization framework. 
The resulting synergy leverages geometric precision of NFP for 
collision-free placements and the evolutionary adaptability of 
SADE for global optimization, thus achieving a balance between 
computational efficiency and nesting quality. 
For clarity and systematic analysis, the remainder of this paper is 

structured as follows. “Related Work” reviews existing relevant texture 
nesting studies, followed by an overview of key concepts in “Basics.” 
“The Proposed Hybrid Method” presents the proposed method, and 
“Computational Experiments” reports the experimental results. Finally, 
“Conclusion” offers our conclusion and outlook for future works.
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Related Work
In this section, three relevant topics are reviewed: First, classical bin 
packing strategies and the NFP framework, both of which provide 
foundational algorithms for spatial layout optimization and can be ad-
opted in texture nesting, are studied. Second, the heuristic algorithms 
specifically designed for nesting optimization tasks are discussed. 
Finally, some relevant deep learning–based methods are reviewed.

Classical Nesting Algorithms and NFP-Based Techniques
Classical Bin Packing Approaches
Classical bin packing algorithms have long served as foundational 
tools for spatial layout optimization, including texture nesting applica-
tions. These methods, originally developed for rectangular or regularly 
shaped objects, aim to maximize use of space within constrained con-
tainers and remain relevant for polygonal texture layout tasks.

Among these, guillotine-based methods have attracted consider-
able attention because of their simplicity and recursive structure. The 
two-dimensional cutting and packing problem was first introduced by 
Gilmore and Gomory (1965) and has since been extensively studied. 
Early research focused on rectangular items with orthogonal cuts, 
where bins were iteratively divided using horizontal or vertical parti-
tions (Mumford-Valenzuela et al. 2004; Charalambous and Fleszar 
2011; Zhang et al. 2016). While efficient for regular shapes, these meth-
ods exhibit limitations when applied to irregular geometries. Recent 
advancements have extended guillotine strategies to handle irregular 
convex polygons by permitting nonorthogonal cuts, thereby reducing 
material waste through dynamic edge matching and separation cuts 
(Bennell et al. 2018). Notably, Bennell et al. (2018) proposed a beam 
search heuristic that integrates best-match edge alignment with adaptive 
separation strategies, achieving use rates of 85%–90% across single- 
and multi-bin scenarios. Their approach significantly outperformed 
prior metaheuristics (Martinez-Sykora et al. 2015) in computational ef-
ficiency, reducing run time by up to 80% for large-scale instances while 
maintaining solution quality through a hybrid evaluation framework.

Skyline-based algorithms have similarly evolved to include increas-
ingly sophisticated placement strategies. Wei et al. (2011), for instance, 
introduced a rectilinear skyline model that dynamically tracks avail-
able space using adaptive skyline segments. This method emphasizes 
edge-aligned placements to minimize spatial fragmentation and uses 
a multi-criteria evaluation strategy incorporating spread constraints 
and fitness-based rules. A notable innovation is the integration of tabu 
search, which promotes solution diversity through strategic rectangle 
swaps. This hybrid approach enhances packing density and mitigates 
premature convergence by effectively escaping local optima. As a result, 
this method demonstrates improved robustness and adaptability over 
traditional skyline heuristics, especially in complex layout scenarios.

Collectively, these classical bin-packing strategies, especially guillo-
tine- and skyline-based approaches, constitute the algorithmic founda-
tion of modern spatial layout optimization. Their continuous refinement 
through heuristic improvements, hybridization, and geometric gener-
alization has expanded their applicability to irregular and large-scale 
packing tasks. Although originally tailored for regular geometries, the 
core principles—recursive subdivision, skyline profiling, and heuristic-
based placement—remain essential in contemporary texture nesting 
workflows. When integrated with broader optimization frameworks and 
domain-specific constraints, these strategies offer interpretable and high-
performance solutions for both academic and industrial applications.

NFP in Irregular Packing
The NFP plays a foundational role in addressing irregular packing 
problems, particularly in enabling collision-free placement of complex 
shapes. Early theoretical contributions by Stoyan and Ponomarenko 
(1977) introduced the geometric basis of NFP through Minkowski 
sums, allowing precise boundary computation for convex objects. 
Dean et al. (2006) subsequently enhanced computational efficiency by 
proposing a vector-based approach, streamlining overlap detection in 
irregular nesting tasks.

Recent developments have expanded the applicability of NFP 
to handle nonconvex polygons and dynamic datasets. Jiang et al. 
(2016) proposed a two-stage NFP algorithm that combines convex 

decomposition with sliding vector operations, achieving a 15% 
improvement in packing density compared with traditional methods. 
Similarly, Xu et al. (2017) integrated NFP with hybrid heuristics—
such as simulated annealing (SA)—to demonstrate its versatility in 
large-scale industrial cutting applications. Aji et al. (2015) further 
applied NFP in distributed systems for spatial partitioning, highlighting 
its scalability in parallel processing environments.

Despite these advances, traditional NFP techniques still encounter 
challenges in computational efficiency and use of space, particularly 
when processing large-scale or highly diverse texture datasets. Many 
existing implementations rely on sequential container allocation 
strategies (Junior et al. 2013), leading to redundant overlap checks and 
limited parallelism. These limitations are directly addressed by our en-
hanced NFP approach, which incorporates adaptive container grouping 
to improve computational efficiency and layout performance.

Heuristic Algorithms for Nesting Optimization
Heuristic algorithms have seen significant advancements in recent 
years, particularly through hybrid approaches that combine genetic 
algorithms (GAs) with other optimization techniques such as SA-based 
and particle swarm optimization to tackle complex texture nesting prob-
lems. For instance, Xu and Zhou (2023) proposed a hybrid algorithm 
that combines improved GAs with tabu search to address two-dimen-
sional rectangular nesting problems. This method uses adaptive selec-
tion, crossover, and mutation operators, along with local search strate-
gies during the convergence phase, to improve material use. Kang et al. 
(2024) introduced an enhanced GA integrated with a fusion tabu search 
strategy to solve three-dimensional bin packing problems (3D-BPPs). 
Their approach uses a wall-building method to generate packing solu-
tions under residual space constraints, incorporating adaptive fitness 
variation and chromosome adjustment strategies to enhance population 
diversity and convergence speed. Furthermore, tabu search optimizes 
the balance between global and local search capabilities, allowing the 
algorithm to escape local optima and enhance packing efficiency.

Additionally, Kang et al. (2012) proposed a hybrid GA for the 
3D-BPP, using an improved depth-bottom-left-fill strategy. This 
method dynamically manages packing space objects and optimizes 
the packing sequence through an adaptive crossover and mutation 
mechanism. Sun et al. (2025) introduced a hybrid chaotic evolutionary 
particle swarm optimization algorithm for two-dimensional packing 
problems involving conflict and load-balancing constraints. Their ap-
proach enhances local search capabilities via chaotic logistic mapping 
and incorporates elite crossover and dynamic mutation to avoid prema-
ture convergence. These two methods advance heuristic algorithms in 
complex nesting problems by integrating spatial partitioning strategies 
and hybrid optimization mechanisms, offering valuable insights into 
handling geometric constraints and improving computational efficiency 
in texture nesting optimization.

Deep Learning–Based Methods
Relevant deep learning–based studies have been widely applied to var-
ious scene representations, including volumes, point clouds, meshes, 
and implicit functions (Liu et al. 2015; Achlioptas et al. 2018; Huang 
et al. 2018; Kanazawa et al. 2018; Wang et al. 2018; Chen and Zhang 
2019; Mescheder et al. 2019; Sitzmann et al. 2019; Niemeyer et al. 
2020). Hertz et al. (2020) proposed a generative adversarial network 
(GAN)–based framework for mesh-aware geometric texture synthesis, 
enabling parameterization-free texture transfer across arbitrary genus 
shapes through vertex displacement in normal and tangential direc-
tions. This approach overcomes the limitations inherent to conven-
tional 2D displacement maps.

Based on GANs, the spatially adaptive normalization model pro-
posed by Park et al. (2019) is particularly well suited for complex scene 
stitching because it dynamically adjusts generation parameters for 
different regions through spatially adaptive normalization layers, effec-
tively preserving the detailed information of the input semantic layout. 
Additionally, convolutional neural networks are used to synthesize tex-
tures for large-scale environments. For instance, Dumoulin et al. (2016) 
proposed a framework for texture synthesis with generative networks 
that can learn to map the high-level attributes of textures to pixel-level 
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details. Moreover, deep learning techniques for optimizing texture nest-
ing have become more sophisticated, with models trained on large-scale 
datasets to handle specific complex texture synthesis and mapping tasks 
(Gatys et al. 2015; Bergmann et al. 2017; Xian et al. 2018; Xu et al. 
2021; Efros and Freeman 2023; Lin et al. 2023; Fan et al. 2024).

Graph-based deep learning methods have also introduced alterna-
tive solutions to texture mapping and nesting problems, emphasizing 
a balance between global consistency and local detail optimization. 
Teimury et al. (2020) introduced Graph-Seam, a supervised graph-
based learning framework that automates UV mapping via graph 
neural networks to predict seam placements, thus reducing distortion 
and seam length while replicating artist-desired seam styles Similarly, 
Rouhani et al. (2020) proposed a noniterative global texture alignment 
method that selects optimal keyframes for each mesh face and uses a 
geometry-aware matching technique for seamless texture reconstruc-
tion, resulting in efficient large-scale texture mapping.

Further extending graph-based deep learning, Dharma et al. (2022) 
developed a graph-GAN for 3D texture generation, using unsuper-
vised learning to extract object component information. This approach 
eliminates the need for costly forward passes when altering camera 
viewpoints or lighting, enabling generalization to unseen 3D meshes 
and further improving the practicality of graph-based approaches. 
Notably, the graph convolutional networks proposed by Kipf and 
Welling (2016) further enhance graph-based learning by efficiently 
propagating node features through localized spectral filters, achieving 
scalable semisupervised classification with linear computational com-
plexity in the number of graph edges. Their framework avoids explicit 
graph regularization and adaptively learns representations from both 
labeled and unlabeled data, offering potential optimizations for model-
ing texture-to-mesh relationships.

Despite recent advances, many deep learning–based approaches 
remain constrained by task specificity, high data requirements, and 
substantial computational overhead, which limits their direct applica-
bility to geometry-driven texture nesting tasks. Future research may 
focus on developing lightweight architectures and hybrid frameworks 
to overcome these challenges.

Basics
To enhance clarity in presenting our proposed method, this section first 
introduces two fundamental basics that underpin its operation: the NFP 
and the SADE algorithm.

The NFP
The NFP is a geometric computational tool used to determine the 
potential contact positions of polygons. It has proven to be an effective 
method for solving a variety of problems, such as two-dimensional ir-
regular cutting-stock problems (Junior et al. 2013). The NFP is widely 
applied across various fields, including computer graphics, image 
processing, and geometric optimization (Dean et al. 2006; Jiang et al. 
2016; Xu et al. 2017; Wang, Gu et al. 2024; Wang, Zhang et al. 2024).

In general, the NFP is defined as follows: given two polygons, A (the 
fixed piece) and B (the orbital piece), and a reference point on B, denot-
ed RB, the NFP is a geometric shape that defines the set of all potential 
positions of B relative to A, where B remains in contact with A but does 

not overlap. The trajectory traced by reference point RB, as it moves 
along the contour of A, forms a closed polygon that represents the NFP 
of A relative to B (Wang, Zhang et al. 2024), as shown in Figure 1.

Figure 1. No-fit polygon generation process.

In our implementation, since the nesting objects in this study are 
irregular polygons, we use the Minkowski sum (Ghosh 1993), a con-
cept involving the combination of two arbitrary point sets, A and B, to 
calculate the NFP between convex polygons. The Minkowski sum is 
the result of adding each point in set A to every point in set B, which is 
expressed as:

	 A5B = {a + b : a∈A, b∈B}	 (1)

The union of the geometric elements of a set can also be defined 
by the Minkowski vector sum. If Ab represents the set A translated by 
vector B, then 

	 	
(2)

The above definition assumes that both polygons share the same 
orientation, in which case the NFP is not produced. However, if poly-
gon B is transposed to its symmetric set

	 B' = {–b:b∈B}	 (3)

then A and B' would share the same orientation, enabling the genera-
tion of the NFP. Stoyan and Ponomarenko (1977) initially established 
the relationship between the Minkowski vector method and normals, 
with a more rigorous proof provided in their work. They refer to the 
NFP as the hodograph. Therefore, the process of calculating the critical 
polygon for convex polygons A and B is as follows:
1.	 First, vectorize polygon A in the counterclockwise direction and 

polygon B in the clockwise direction. 
2.	 Place the starting points of all vector edges of polygon A at the 

origin (0, 0) and the same for polygon B. 
3.	 Sort all vector edges of polygons A and B in ascending order ac-

cording to the angle between each vector and the reference vector. 
4.	 Finally, connect the sorted vector edges sequentially from head to 

tail to obtain the critical polygon for A and B. 
The computational diagram for convex polygons A and B is shown 

in Figure 2.

Figure 2. Simple example of Minkowski vector and normal method for generating no-fit polygon (NFP).
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SADE Algorithm
The SADE algorithm was developed as an extension of traditional dif-
ferential evolution (DE) via extensive research and iterative develop-
ments (Hrstka and Kučerová 2000). It is designed to address complex 
optimization problems in continuous domains, particularly for those 
with a large number of variables. SADE integrates key features of DE 
with elements of GAs, combining the simplified differential operator 
of DE with a framework similar to that of GAs. This hybridization 
improves its adaptability and efficiency, making it particularly suitable 
for large-scale optimization tasks (Hrstka and Kučerová 2004).

A comprehensive description of the SADE method, including 
the algorithm scheme, operators, and documentation for tests on 
high-dimensional optimization problems, can be found in Hrstka and 
Kučerová (2000).

The SADE algorithm tends to form clusters of candidate solutions, 
which dynamically evolve across the search space. This behavior 
shares similarities with gradient-based optimization methods, but dif-
fers in several key aspects. First, SADE evaluates multiple candidate 
solutions simultaneously, allowing it to more effectively identify subre-
gions that contain optimal solutions. Furthermore, since the evolution 
of individuals is influenced by their relative distances, the algorithm 
dynamically adjusts step sizes, which enhances its ability to efficiently 
converge toward an optimal solution. More details regarding the imple-
mentation of the SADE algorithm may be seen in Table 1.

Table 1. Algorithm 3.1: simplified atavistic differential evolution 
(SADE).
Algorithm 3.1   Simplified Atavistic Differential Evolution (SADE) 
1: Initialize population P 
2: Initialize crossover rate and mutation strategy selection rate
3: while the termination condition is not met do 
4:   for individual i in P do 
5:     Select a mutation strategy
6:     Generate the mutation vector V 
7:     Perform the crossover operation to generate the candidate solution U 
8:     if fitness(U) > fitness(P[i]) then 
9:       P[i]= U
10:     end if 
11:   end for 
12:   Adaptively update the crossover rate and mutation strategy selection rate
13: end while 

The Proposed Hybrid Method
In this section, we report a detailed overview of the overall workflow 
of our new hybrid method focusing on two main contributions: 1) 
enhanced NFP method and 2) improved SADE algorithm.

Overview of Our Hybrid Nesting Method
Figure 3 shows the general workflow and main components of our pro-
posed method, which integrates two primary parts: NFP generation and 
the SADE process. The pseudocode of the proposed hybrid method is 
provided in Table 2.

To enhance clarity, the definitions of several critical parameters 
are provided. The population size P denotes the number of individuals 
preserved in each generation throughout the evolutionary process. This 
parameter was empirically calibrated through preliminary experimen-
tation to achieve a trade-off between solution accuracy and computa-
tional efficiency. The termination condition in the algorithm is defined 
by two factors: the number of iterations and the optimal fitness value. 
Specifically, the algorithm terminates when the number of iterations 
reaches the predefined maximum (Iterations < MaxIter) or when the 
optimal fitness value of the best individual falls below a predetermined 
threshold (fbest < T). The target fitness value T corresponds to a prede-
termined threshold that reflects an acceptable level of solution quality. 
Its value was established in accordance with practical application 

requirements and informed by empirical observations derived from 
previous studies.

Table 2. The proposed hybrid texture nesting method.
Algorithm 4.1   Hybrid Optimization Method 
Input: Polygon dataset, population size P, mutation rate MR, termination condition
Output: Optimized texture layout solution
1: Sort polygons in descending order of area
2: Estimate initial container size using total polygon area
3: Initialize primary and secondary containers
4: Generate initial population P with feasible placements and rotations
5: while termination condition not met do 
6:   Calculate and obtain all the NFP between polygons
7:   for each polygon in sorted dataset do 
8:     Attempt placement in primary container using NFP
9:     if placement fails then assign to secondary container
10:   end for 
11:   Apply adaptive resizing on primary container if fill ratio < SUR 
12:   Evaluate fitness for each individual in the population
13:   Sort P by fitness in ascending order
14:   Preserve best individual
15:   for each selected individual CHi do 
16:     Generate random reference individual RP 
17:     Compute mutation vector:
18:   CHk(t+1) = CHi(t) + MR×(RP – CHi(t))
19:     Ensure feasibility of mutated individual
20:   end for 
21:   Combine original and mutated population
22:   while population size >P do 
23:     Randomly select two individuals
24:     Discard the one with worse fitness
25:   end while 
26: end while 

Figure 3. The overall workflow of the proposed method. NFP = no-
fit polygon; SADE = simplified atavistic differential evolution. 

NFP Generation
First, the polygon dataset is sorted by area size in descending order, 
and an appropriate container size is then determined based on the total 
area of all polygons. Second, unlike the traditional NFP method, our 
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approach incorporates the container group strategy with parallel com-
putation, where placed polygons are assigned to a primary container, 
while unplaced ones are directed to a secondary container for concur-
rent processing. Finally, all NFPs between polygon pairs are computed, 
and each polygon is assessed for feasible placement positions. More 
details can be found in “Enhanced NFP Method.”

SADE-Based Optimization
To efficiently solve the texture nesting problem, we adopt an im-
proved SADE algorithm tailored for geometric layout optimization. 
The SADE component operates on a population-based evolutionary 
framework, starting with the initialization of a diverse and constraint-
compliant population. Each individual encodes the placement and 
rotation of all polygons and is evaluated using the fitness function. 
The optimization proceeds iteratively via a main evolutionary loop, 
where individuals undergo mutation based on a randomized differential 
strategy, followed by fitness evaluation and selection through a modi-
fied tournament mechanism. Notably, individuals violating geometric 
constraints are discarded or penalized during evaluation, ensuring the 
feasibility of generated layouts. The algorithm terminates when either 
a maximum number of generations is reached or a convergence thresh-
old is met. This design leverages the global search capability of SADE 
while integrating geometric feasibility checks from the NFP module to 
improve convergence speed and solution quality. (See more details in 
“Improved SADE.”) 

Enhanced NFP Method
As the number of polygons increases, the computational cost and time 
required for NFP calculations grow significantly. The traditional 
container allocation method exacerbates these challenges by demon-
strating low space use and excessive resource waste, which become 
more pronounced with complex polygon shapes or uneven dataset 
distributions, leading to decreased computational efficiency and higher 
operational costs (Aji et al. 2015; Zuo et al. 2022). The workflow of 
the enhanced NFP process is illustrated in Figure 4.

To address these limitations, this paper introduces two key im-
provements to the traditional NFP approach, with a particular emphasis 
on a container group strategy designed to enhance scalability and 
adaptability in large-scale texture layout tasks.

Specifically, the process begins by estimating an initial container 
size based on the total area of all polygons. This estimation is rounded 
to the nearest power of two to ensure compatibility with GPU-based 
texture rendering and mipmapping. If the fill ratio of the container falls 
below a predefined threshold (SUR [Spatial Utilization Ratio]), its 
width is dynamically reduced to improve packing compactness while 
maintaining placement feasibility.

Subsequently, a container group strategy is applied to manage the 
placement process. All polygons are initially sorted in descending 
order of area, and then processed in parallel. Polygons that can be 
feasibly placed are assigned to the primary container, while those that 
cannot be placed because of geometric constraints are redirected to a 
secondary container for concurrent processing. This design improves 
computational efficiency by isolating unplaceable or complex shapes 
into a separate container, thereby reducing placement conflicts and 
redundant overlap computations. Each container manages its own 
placement logic independently, which is particularly effective when 
handling texture datasets with a high degree of shape diversity or 
uneven polygon distribution. While only two containers are used, this 
mechanism achieves partial parallelism and improves throughput by 
localizing computational complexity.

Together, the adaptive resizing mechanism and dual-container 
strategy enable the proposed approach to efficiently handle diverse and 
large-scale polygon datasets. By localizing complexity and dynami-
cally adjusting space allocation, the method achieves a favorable 
balance between computational efficiency and packing quality, making 
it particularly suitable for real-world texture layout applications with 
high performance demands.

Improved SADE
To address the inefficiencies of existing texture nesting algorithms, this 
work incorporates various optimization strategies into the classical 

Figure 4. Enhanced no-fit polygon (NFP) processing workflow.
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SADE algorithm, yielding a more effective texture nesting optimiza-
tion algorithm based on SADE. Figure 5 presents the workflow of our 
improved SADE process and the key modules. Specifically, the process 
begins with the preparation of a polygon dataset and the enhanced NFP 
generation. If the SADE algorithm has not yet been initialized, the 
process proceeds with population initialization; otherwise, the 
population is sorted in ascending order according to fitness, and the 
best individual is preserved. Then, the main loop is executed.

Initialize SADE (Init Population) 
The initialization phase of the SADE algorithm plays a crucial role in 
establishing a diverse and feasible starting point for the evolutionary 
process, which directly affects convergence behavior and overall per-
formance. In this phase, each individual in the population is randomly 
generated within the feasible solution space to ensure diversity and 
broad coverage of the search domain (Hrstka and Kučerová 2004). 
Parameters such as placement positions and rotation angles are typical-
ly sampled from a uniform distribution to avoid any initial bias toward 
specific regions. Importantly, all generated individuals are required 
to satisfy problem-specific constraints from the outset, guaranteeing 
that the initial population is valid and suitable for evolution. A fixed 
population size P is maintained, with each individual represented as 
a vector of decision variables tailored to the structure of the problem. 
This well-initialized population forms the foundation for subsequent 
evolutionary operations, such as mutation and selection, and provides 
the algorithm with a robust starting point for exploring the solution 
space effectively.

Main Loop of the Improved SADE 
The main loop of the improved SADE algorithm iteratively executes 
a sequence of operations until a termination condition is met, which 
occurs either when the maximum number of iterations is reached or 
when the optimal fitness value falls below a predefined threshold. At 
each generation, individuals are randomly selected, undergo mutation 
operations, and are subsequently evaluated. The population is then 
updated through a selection and elimination process that retains the 
most promising solutions.

Mutation plays a pivotal role in maintaining diversity and promot-
ing global exploration in the evolutionary process. In this framework, 
mutation is primarily implemented through the Mutation operator, 
which introduces stochastic perturbations into selected individuals 
while preserving feasibility. Specifically, when an individual binary 
string (so-called chromosome) CHi(t) is selected for mutation, a new 
random chromosome RP is generated, and the updated chromosome 
CHk(t+1) is computed using the following strategy (Hrstka et al 2003):

	 CHk(t+1) = CHi(t) + MR (RP – CHi(t))	 (4)

Here, MR is the mutation rate, controlling the scale of the variation 
introduced. This formulation ensures that new individuals are gener-
ated in a direction guided by a randomly sampled reference, thereby 
balancing exploration and exploitation. All mutations are constrained 
within the valid solution space, ensuring that geometric feasibility and 
placement constraints are respected. 

Following mutation, the algorithm proceeds with a selection and 
elimination phase to refine the population. Inspired by a modified tour-
nament selection strategy, two individuals are randomly selected from 
the combined population (original and mutated), and the one with the 
worse fitness is discarded. This elimination step is repeated iteratively 
until the population size is reduced back to the predefined constant P. 
This elitist yet diversity-preserving approach ensures that high-quality 
individuals are retained while maintaining sufficient variability to 
avoid premature convergence.

Time Complexity Analysis
The time complexity of our method is discussed as well. Given that 
the population size is defined as N, the maximum number of iterations 
as MaxIter, and the complexity of the find_fitness function as O(f), 
we evaluate the computational cost accordingly. First, the complex-
ity of generating the population is O(N), where the fitness values of N 
individuals in each population are calculated sequentially, resulting in a 
complexity of O(N×f). Then, in the main iteration of Table 2, the rank-
ing process based on fitness values has a complexity of O(N log N), 
while the mutation operation applied to each individual has a com-
plexity of O(N). The fitness evaluation for all individuals is with a 
complexity of O(N×f), and identifying the optimal individual involves 
either sorting or traversing, adding a complexity of O(N).

Consequently, the total complexity within the main iteration is

	 O(N log N+N×f)	 (5)

Thus, the overall time complexity of the algorithm is expressed as

	 O(N)+ O(N×f)+O(MaxIter×(N log N + N×f))	 (6)

After simplifying by neglecting lower-order terms, the time com-
plexity is reduced to

	 O(MaxIter×(N log N + N×f))	 (7)

Computational Experiments
Experimental Settings
To demonstrate the efficacy of our proposed hybrid method, some 
real polygon datasets were used via unmanned aerial vehicle oblique 
photogrammetry. First, 3D mesh tiles were generated through the 

Figure 5. Improved simplified atavistic differential evolution (SADE) processing workflow.
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commercial software ContextCapture, and the boundaries of individual 
texture maps were extracted from the relevant OBJ files and converted 
into polygonal coordinate data, forming the dataset for our testing.

For evaluation, three datasets of various sizes (D1, D2, and D3) 
were used to test our hybrid optimization method, each containing a 
different number of polygons. Based on these datasets, extensive abla-
tion studies were reported; then, the traditional texture nesting methods 
based on GA and SA algorithm were compared. The details of the da-
tasets are listed in Table 3 and sample images of experimental textures 
are shown in Figure 6. All the proposed methods were implemented in 
Python, and all tests were conducted on a MacBook equipped with an 
Apple M4 Pro chip and 24 GB of RAM. Code is available at https://
github.com/louliyuan/NFP-SADE-With-Adaptive-Container-Resizing.

Table 3. Dataset characteristics.

Datasets

Total 
Number  
of Parts

Maximum 
Number 

of Vertices 
in a Polygon

Total 
Number  

of Vertices

Average 
Number 

of Vertices 
Per Polygon

D1 302 30 2276 7.54

D2 360 24 3544 9.84

D3 1123 30 8217 7.32

Ablation Studies
Performance of the Improved SADE Algorithm
In this section, the three datasets (D1, D2, and D3) are used to evaluate 
the proposed improved SADE algorithm. Table 4 reports the results of 
two metrics: execution time (the average of three independent trials for 
each dataset) and space use rates. The conducted experiments include a 
GA-based method (integrating GA with the traditional NFP approach), 
an SA-based method (integrating SA algorithm with the traditional 
NFP approach, referred to as SA), an original SADE-based method (in-
tegrating traditional SADE with the traditional NFP approach, referred 
to as Original), and an improved SADE-based method (integrating 
the improved SADE with the traditional NFP approach, referred to as 
Improved). It can be seen that the improved SADE algorithm consis-
tently achieves the best execution times across all datasets. Notably, 

it achieves a 16.1% speed improvement on D1 and an 8.3% improve-
ment on D3 compared with the original SADE method. Moreover, it 
demonstrates superior performance to both the GA and SA baselines, 
which are commonly used heuristic optimization techniques in polygon 
packing problems. In terms of space use, the improved SADE method 
maintains the high packing density of the original SADE algorithm 
(84.94%–85.46%), while outperforming the GA-based approach by 
a significant margin (up to 10% higher in D2). It is worth noting that 
while the SA-based method matches the packing rate of SADE, it falls 
short in computational efficiency.

Table 4. Performance of the improved simplified atavistic differential 
evolution. Time efficiency and space use rate are provided. Best result 
is highlighted in bold.
Method/Data Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
112.547 229.959 1418.115 65.43 75.73 83.61

GA 113.345 228.509 1373.179 65.43 85.46 82.56
110.281 226.127 1439.077 65.43 85.46 82.73

average_1 112.057 228.198 1410.124 65.43 82.22 82.97
111.565 219.710 1350.344 65.43 85.46 84.94 

SA 112.896 215.375 1386.211 65.43 85.46 84.94 
109.694 220.550 1329.140 65.43 85.46 84.94 

average_2 111.385 218.545 1355.232 65.43 85.46 84.94 
128.948 266.731 1446.152 65.43 85.46 84.94 

Original 128.797 228.509 1463.868 65.43 85.46 84.94 
120.857 280.344 1516.427 65.43 85.46 84.94 

average_3 126.201 275.967 1410.124 65.43 85.46 84.94 
109.518 206.866 1305.766 65.43 85.46 84.94 

Improved 108.754 207.889 1257.224 65.43 85.46 84.94 
91.356 204.347 1316.055 65.43 85.46 84.94 

average_4 103.209 206.367 1293.015 65.43 85.46 84.94 
GA = genetic algorithm; SA = simulated annealing.

These results confirm that our improved SADE algorithm delivers a 
better balance between computational efficiency and packing quality, 
making it well suited for large-scale and time-sensitive applications 

Figure 6. Sample textures of experimental data.
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such as texture layout. Figure 7 further illustrates the qualitative 
differences among the GA-based, SA-based, and improved SADE-
based placements, clearly highlighting the superior compactness and 
placement efficiency achieved by the proposed method.

Performance of NFP Parallelization
To explore the efficiency of the NFP parallelization strategy, it was 
incorporated into the Improved method, and the execution time was 
compared across three datasets. Each test was performed using a single 
iteration, and the final results were averaged over three independent 
trials, as summarized in Table 5. The results demonstrate that the NFP 
parallelization strategy improves computational efficiency by approxi-
mately 8% over the traditional NFP implementation.

Investigation of Iteration Number
Table 6 presents the results obtained using different numbers of itera-
tions. The comparison is made between the Improved method executed 
with 2, 3, and 5 iterations. The results indicate that increasing the 
number of iterations typically has only a marginal effect on overall use 
of space, with no significant improvements observed. However, higher 
iteration counts cost substantially more execution time, reducing time 
efficiency. Note that this test assumes that the container size is suf-
ficient to accommodate all polygons.

Table 5. Comparison of execution time (s) with and without no-fit 
polygon parallelization. Best data is highlighted in bold.
Method/Data D1 D2 D3

47.905 93.793 649.874 
With 47.477 99.568 647.443 

50.087 95.124 649.933 
average_time_1 48.490 96.162 649.083 

52.763 100.345 650.890
Without 52.436 99.773 656.647

53.678 100.415 654.925
average_time_2 52.959 100.17748 654.154

Table 6. Comparison of space use and execution time across different 
iteration counts.

Counts/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3

2 103.209 206.367 1393.015 65.43 85.46 84.94

3 151.913 306.374 2015.819 65.43 85.46 84.94

5 254.660 508.987 3254.855 65.43 85.46 84.94

(a) Visualization of D1

(b) Visualization of D2

(c) Visualization of D3

Figure 7. Comparison of visualization results among simplified atavistic differential evolution–based (left), genetic algorithm–based (middle), 
and simulated annealing–based (right) methods.
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Performance of Container Group Strategy
To evaluate the effectiveness of the proposed container group strategy, 
Table 7 compares execution time and space use on different datasets, 
both with and without the container group strategy. The results show 
that integrating the container group strategy can significantly reduce 
execution time, achieving efficiency improvements of approximately 
70% for D2 and D3. This demonstrates the superior performance of the 
optimized algorithm in handling large-scale datasets. Furthermore, use 
of space improved across all datasets, approaching SUR regardless of 
dataset size.

Table 7. Comparison of space use and execution time with and without 
container group (SUR = 95%). Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
52.077 41.551 427.984 65.43 92.02 87.45 

With 45.086 41.615 428.817 65.43 92.02 87.45 
47.169 42.685 433.528 65.43 92.02 87.45 

Average 48.110 41.950 430.110 65.43 92.02 87.45 
109.518 206.866 1305.766 65.43 85.46 84.94

Without 108.754 207.889 1257.224 65.43 85.46 84.94
91.356 204.347 1316.055 65.43 85.46 84.94

Average 103.209 206.367 1293.015 65.43 85.46 84.94

Tables 7 and 8 provide results using the threshold of SUR 95% and 
90%, respectively. When space use requirement in NFP is lower, our 
optimized algorithm can run more quickly. Despite threshold (SUR) 
variations, the algorithm maintains a consistent performance trend 
across datasets, further confirming its reliability. A qualitative effect of 
the container group strategy on D2 and D3 is shown in Figure 8.

Table 8. Comparison of space use and execution time with and without 
container group (SUR = 90%). Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
45.714 37.404 1256.504 65.43 92.02 84.94

With 45.173 37.360 1242.021 65.43 92.02 84.94
44.987 37.245 1291.741 65.43 92.02 84.94

Average_1 45.291 37.336 1263.422 65.43 92.02 84.94
109.518 206.866 1305.766 65.43 85.46 84.94

Without 108.754 207.889 1257.224 65.43 85.46 84.94
91.356 204.347 1316.055 65.43 85.46 84.94

Average_2 103.209 206.367 1293.015 65.43 85.46 84.94

Overall, the optimized adaptive container resizing function demon-
strates robust optimization performance under varying threshold (SUR) 
and dataset conditions. The strategy significantly enhances execution 
efficiency, reduces computation time, and improves use of space. These 
results confirm the robustness and stability of the proposed method. 
However, the observed performance differences across datasets 
highlight the critical influence of dataset characteristics (e.g., polygon 
count, size, and shape) on optimization effectiveness.

Comparison with Classical Heuristic Methods
In this section, the proposed method that integrates an enhanced NFP 
method with an improved SADE algorithm is compared with the clas-
sical GA-based method combining with the traditional NFP and the 
SA-based method that incorporates SA into the same layout frame-
work. The results are presented in Table 9.

Table 9. Comparison of space use and execution time between the 
proposed and classical heuristic methods. Best data is highlighted in bold.

Method/
Data

Execution Time (s) Space Use (%)

D1 D2 D3 D1 D2 D3
52.077 41.551 427.984 65.43 92.02 87.45 

Proposed 45.086 41.615 428.817 65.43 92.02 87.45 
47.169 42.685 433.528 65.43 92.02 87.45 

Average 48.110 41.950 430.110 65.43 92.02 87.45 
112.547 229.959 1418.115 65.43 75.73 83.61

GA 113.345 228.509 1373.179 65.43 85.46 82.56
110.281 226.127 1439.077 65.43 85.46 82.73

Average 112.057 228.198 1410.124 65.43 82.22 82.97
111.565 219.710 1350.344 65.43 85.46 84.94

SA 112.896 215.375 1386.211 65.43 85.46 84.94
109.694 220.550 1329.140 65.43 85.46 84.94

Average 111.385 218.545 1355.232 65.43 85.46 84.94
GA = genetic algorithm; SA = simulated annealing.

(a) Visualization of D2 (Left) and D3 (Right) Without 
Container Group

(b) Visualization of D2 With Container Group

(c) Visualization of D3 With Container Group

Figure 8. Visualization of different datasets before and after applying 
the container group strategy.
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It can be found that the proposed method significantly outperforms 
both classical heuristic methods in terms of execution efficiency, 
achieving up to 5.44 times speed improvement over the GA-based 
method and 5.21 times speed improvement over the SA-based method, 
particularly for large-scale datasets such as D3. Additionally, the 
proposed method exhibits substantially higher use of space, indicat-
ing a more efficient algorithm design and a more effective resource 
allocation strategy. A sample irregular texture mapping result is shown 
in Figure 9, in which Figure 9a is the reorganized texture image and 
Figure 9b is the corresponding layout of irregular polygons.

(a) Re-organized Texture Image

(b) Polygon Layout

Figure 9. Visual results of reorganized texture image and polygon layout.

Conclusion
This paper presents a novel hybrid optimization approach for efficient 
irregular texture nesting, integrating an enhanced NFP method with 
an improved SADE algorithm. To address computational inefficien-
cies and suboptimal use of space in large-scale 3D texture nesting, we 
introduce a self-adaptive container resizing strategy, parallelized NFP 
processing, and refined mutation operations for polygon placement. 
These innovations collectively improve collision-free nesting explora-
tion, maintain population diversity, and accelerate convergence.

Experimental results on real-world datasets demonstrate the supe-
riority of the proposed method over two canonical heuristic methods, 
specifically the GA-based and SA-based methods. Without container 
grouping, our method outperforms both classical heuristic methods, 
achieving a 12% reduction in execution time and a 3%–10% improve-
ment in use of space compared with the GA-based method. With 
adaptive container grouping, the execution time is reduced by up to 
5.44 times over the GA-based method and 5.22 times over the SA-
based method. Our method’s practicability is validated by its consistent 
performance across datasets of varying sizes, exhibiting better space 
use rate and time efficiency. Additionally, extensive ablation studies 

prove the efficacy of parallelized NFP and adaptive container strategies 
in balancing time efficiency and space use rate.

Beyond the specific scope of texture layout optimization, the 
proposed approach demonstrates strong potential for broader ap-
plicability within urban informatics and smart city systems. In traffic 
management scenarios, heterogeneous vehicle types—represented as 
irregular polygons—can be dynamically configured in constrained ur-
ban spaces, such as intersections, parking zones, or emergency access 
routes. Optimizing these spatial configurations can enhance road usage 
efficiency, alleviate congestion, and improve safety and resilience. 
Furthermore, the algorithm’s core mechanisms are transferable to 
domains such as logistics, intelligent warehouse systems, and virtual 
urban modeling, where scalable layout optimization and real-time 
spatial planning are essential.

In future work, we plan to extend the proposed framework to sup-
port more complex and dynamic polygonal structures, particularly those 
with internal holes. Although the current implementation focuses on 
external boundary–based NFP computation, interior voids are common 
in real-world texture data and can significantly affect nesting outcomes. 
Efficiently handling such features will require advancements in auto-
matic hole detection and NFP generation tailored to hole-aware con-
figurations. Additionally, we aim to incorporate support for nonconvex, 
dynamic datasets; explore the integration of deep learning techniques 
for predictive container initialization; and adopt GPU-accelerated paral-
lelization to enhance scalability and computational performance. These 
directions represent key avenues for improving the flexibility, robust-
ness, and real-time applicability of our hybrid optimization system.
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